
Goal	
Development	of	methods	for	the	inversion	of	
the	geothermal	flux	at	the	base	of	ice	sheets	
from	surface	velocity	observa9ons.	Geothermal	
flux	is	a	source	of	uncertainty	for	ice	sheet	
internal	temperatures	and	thus	ice	rheology.		

Inversion	of	geothermal	flux	in	a	thermo-mechanically		
coupled	Stokes	ice	sheet	model	 

Impact	
Systema9c	methods	to	invert	for	geothermal	
flux	could	improve	model-based	predic9ons	of	
ice	sheet	mass	loss	and	sea-level	rise	

H.	Zhu,	N.	Petra,	G.	Stadler,	T.	Isaac,	T.	J.	R.	Hughes	and	O.	GhaFas.	Inversion	of	geothermal	heat	flux	in	a	thermomechanically	coupled	nonlinear	Stokes	ice	sheet	model.	The	Cryosphere,	
10,	1477-1494,	(2016).		

Example	of	reconstructed	heat	flux	in	3D	model	problem.	Shown	
are	(a)	synthe9c	velocity	observa9ons,	(b)	modeled	surface	velocity	
for	the	reconstructed	heat	flux,	(c)	the	“true”	(synthe9c)	heat	flux,	
and	(d)	its	reconstruc9on	found	by	solving	the	inverse	problem.	

Approach	
Inverse	problem	constrained	by	the	
thermo-mechanically	coupled,	nonlinear	
Stokes	ice	sheet	model	equa9ons	

•  deriva9ves	computed	through	adjoints	
•  scalable	Newton	inversion	algorithm	
•  inexactness	in	gradient	computa9on	

due	to	operator	staggering	is	studied	
•  findings:	inversion	of	heat	flux	features	

of	size	>20x	ice	thickness	can	be	
reconstructed	from	data	containing	
errors	of	1%	
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Fig. 7. Reconstruction of geothermal heat flux G for the three-
dimensional model problem. Shown in (a) are observations of the
surface velocity (arrows and contour lines) with SNR = 20, and
(b) shows the surface velocity corresponding to the reconstructed
geothermal heat flux. In (c), we show the “truth” geothermal heat
flux defined in (45), and (d) shows the reconstructed heat flux.

solved using the just-computed first physics state variables.
One then iterates until convergence, which is guaranteed only
if the spectral radius of a certain iteration matrix is less than1020

unity. If the iteration converges, it converges to the correct
solution. Such one-way coupled solvers have been used suc-
cessfully for ice flow forward problems (Dahl-Jensen, 1989;
Hvidberg, 1996; Price et al., 2007; Zwinger et al., 2007;
Zhang et al., 2011), in which case the solver iterates back-1025

and-forth between Stokes and energy equation solves, pass-
ing velocities from the former to the latter, and tempera-
tures from the latter to the former. The convergence rate is
only linear, as opposed to quadratic for a fully-coupled New-
ton forward solver, but one might still prefer the one-way1030

coupled approach due to its ability to capitalize on existing
single-physics solvers and codes, its avoidance of computing
Jacobians of coupling terms, and the difficulties of designing
preconditioners for the fully-coupled Jacobian. Therefore, it
is tempting to use the same operator from a one-way coupled1035

forward solver to also solve the adjoint problem during inver-
sion. However, this also leads to an incorrect adjoint opera-
tor, since it discards some of the coupling blocks within the
operator. This in turn leads to an incorrect gradient, which
can lead to inaccurate or incorrect solutions of the inverse1040

problem, depending on how strong the coupling terms in the
Jacobian of the fully coupled problem are. In this section we
illustrate this issue using the multiphysics inverse problem
given by the coupled system consisting of the Stokes equa-
tions (1) and (2), and the energy equation (3). In the rest of1045
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Fig. 8. The temperature field (in 0C) corresponding to the recon-
structed geothermal heat flux G for the three-dimensional model
problem. Shown in (a) are slices through the domain, and (b) shows
the temperature at the base �
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this section, to simplify the notation, we drop the h super-
scripts on discrete variables.

In the following discussion, we express the forward prob-
lem (6)–(9) in terms of the residuals of the discretized equa-
tions, as follows:1050
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tions, respectively. The discrete adjoint system correspond-1055

ing to (19), (20) and (21) can be written as
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where v, q, and � denote the discretized adjoint velocity,
pressure, and temperature, respectively, and f

v

is the right
hand side of the discrete adjoint momentum equation corre-1060

sponding to the misfit term in (22). Here, B
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